Enhanced Data Driven Mode-free Adaptive Yaw Control of Uav Helicopter
نویسندگان
چکیده
An enhanced data driven model-free adaptive yaw control tracking control scheme is proposed for the yaw channel of an unmanned-aerial-vehicle (UAV) helicopter which is non-affine in the control input in this paper. Through dynamic linearization and observer techniques, the proposed control algorithm is only based on the pseudo-partial derivative (PPD) parameter estimation derived online from the I/O data of the yaw channel of an UAV helicopter, and Lyapunov-based stability analysis is utilized to prove all signals of close-loop control system are bounded. Compared with the traditional model free adaptive control (MFAC), the proposed enhanced MFAC algorithm can make the close-loop control system with stronger robustness and better anti-jamming ability. Finally, simulation results of the UAV yaw channel are offered to demonstrate the effectiveness of the proposed novel control technique.
منابع مشابه
Tail Motion Model Identification for Control Design of an Unmanned Helicopter
This paper explains the methodology developed to design the yaw control system (heading control system) of the α-SAC UAV. The problem of modeling and controlling the tail motion of this UAV along a desired trajectory is considered. First, the response data of the system are collected during special flight test and a linear time invariant model is extracted by identification techniques. Then, th...
متن کاملHybrid Control for Uav-assisted Search and Rescue
We develop a decentralized hybrid controller for fixed-wing UAVs assisting a manned helicopter in a United States Coast Guard search and rescue mission. The UAVs assist the manned helicopter by providing an expanded sensor footprint using onboard cameras. We consider two UAVs, one flying on either side of the helicopter, with constant velocity and maximum turn rate constraints. Tracking the hel...
متن کاملGain-Scheduled Control of a Quadrotor UAV
In this thesis we develop a gain-scheduled control law for the quadcopter unmanned aerial vehicle (UAV). Techniques from linear control theory are introduced and used to construct adaptive proportional and proportional-integral control laws for use with both state and observer-based output feedback. The controller monitors the yaw angle of the quadcopter and updates a gain matrix as the system ...
متن کاملComprehensive Nonlinear Modeling of a Miniature Unmanned Helicopter
A nonlinear flight dynamics model that can be adopted by small-scale unmanned aerial vehicle (UAV) helicopters is presented. To minimize structural complexity, the proposed nonlinear model contains only four essential components, i.e., kinematics, rigid-body dynamics, main rotor flapping dynamics, and yaw rate feedback controller dynamics. A five-step parameter determination procedure is propos...
متن کاملFault-Tolerant Trajectory Tracking Control of a Quadrotor Helicopter Using Gain-Scheduled PID and Model Reference Adaptive Control
Based on two successfully and widely used control techniques in many industrial applications under normal (fault-free) operation conditions, the Gain-Scheduled Proportional-Integral-Derivative (GS-PID) control and Model Reference Adaptive Control (MRAC) strategies have been extended, implemented, and experimentally tested on a quadrotor helicopter Unmanned Aerial Vehicle (UAV) testbed available...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015